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The paper describes an investigation of the internal waves that are produced 
in a stratified fluid having constant Brunt-Viiisiila frequency by a cylinder which 
executes small vibrations at a lower frequency. Explicit solutions are found for 
slender cylinders having arbitrary cross-sections. When the cross-sectional area 
of the cylinder varies with time it is found necessary in calculating the surface 
pressures and power output to take account of terms in the governing equations 
that are significant only at  distances from the cylinder comparable to or larger 
than the scale height of the density variations. For this case a simple expression 
for the power output is obtained in terms of the rate of change of the cross- 
sectional area of the cylinder. 

When the vibrating cylinder is rigid its cross-sectional area is independent of 
time and then the expression for the power output is very similar to von K k m h ’ s  
expression for the drag of a body of revolution in supersonic flow. 

In  both the above cases it is found that one quarter of the power is radiated in 
each of the four directions that are inclined at  a particular angle to the horizontal. 

1. Introduction 
Internal waves play an important role in many atmospheric and oceanic 

geophysical phenomena and in some cases it appears that their production can 
be regarded as being due to the forced motion of some surface that bounds or 
partially bounds the fluid in which they occur. An example is provided by the 
internal waves that can occur in the stably stratified fluid above a strato-cumulus 
cloud as a result of convection within the cloud (Townsend 1966). 

For this reason, and also because it is the standard way in which they are 
produced in the laboratory, it is of interest to examine the production of internal 
waves by a vibrating body. 

The frequency of vibration of the body must be less than the Brunt-Viiisiilii 
frequency of the fluid surrounding it for internal waves to be produced. If it is 
greater than the acoustic cut-off frequency, which is somewhat greater than the 
Brunt-Viiisala frequency (Tolstoy 1963), sound waves are emitted and the effects 
of a small stratification are small in this case. Thus to a good approximation the 
well-known results for a homogeneous fluid (see, for example, Landau & Lifshitz 
1959) may be used. The emission of internal waves is a different problem and has 
received less attention. 

The problem has, however, been considered recently by Mowbray & Rarity 
(1967) who elucidated many of its main features. The present investigation is 
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complementary to theirs and detailed solutions are obtained for the motions 
produced by vibrating slender cylinders immersed in a stratified fluid having 
constant BruntcVaisala frequency. 

The plan of the paper is as follows : the next section contains the derivation of 
the equations that govern small motions of a stratified h i d .  Terms in these 
equations that are significant only at  distances from the cylinder comparable to 
or larger than the scale height of the density variations are retained because 
they have a significant effect on the calculation of the pressures near the cylinder 
when its cross-sectional area varies with time. Section 3 presents particular 
solutions of these equations which correspond to a source and a vortex whose 
strengths vary harmonically with time. Section 4 gives an investigation of the 
properties of line distributions of sources and vortices and 0 5 an account of their 
use in determining the motions produced by a vibrating slender cylinder. 

2. Basic equations 
The Euler equations for the two-dimensional motion of a stratified fluid are 

au au au l a p  
at +++'- ax ay =--- p a x ,  (2.1) - 

av av av l a p  
z+u-+v- = --- - g, ax ay pay 

and the equation of continuity is 

a a 
at ax a Y  
2 + - (pu) + - (pv) = 0. 

Here Oxy is a set of rectangular axes with Ox horizontal and Oy vertically 
upwards. u, v are the velocity components, p is the density, p the pressure and g 
the acceleration due to gravity. 

The condition that the entropy S is constant along a particle path is 

as as as 
at ax ay  -+u-+v- = 0 

or -+u-+v- =c2 -+u-+v- aP aP aP 
at ax ay  (Z ax ap ay "1 3 

where 

is the speed of sound. 
Suppose that small motions are taking place in the fluid and put 

P = PO+Pl, P = PO+Pl, 

where p o  is the equilibrium pressure and 

Po = PgexP ( - P Y ) ,  ( 2 . 5 )  
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where pg and /3 are constants, is the equilibrium density. Then, if the time 
dependence of each quantity is given by the factor exp ( - iwt) the linearized 
versions of (2.1) to (2.4) are, with subscripts one omitted, 

. 1 ap 
-%wu+-- = 0, 

Po ax 
1 aP P9 -iwv+- -+- = 0, 

PoaY Po 

i w p  ipwC2 
-gv+pc2v--+- = 0. 

Po Po 

It is convenient to take p as the fundamental dependent variable and to 
express the other quantities in terms of it. Hence the set of equations (2.6)-(2.9) 
is replaced by the equivalent set 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

In these equations 

(2.15) 

and 

where 

is the Brun&Vi%isal& frequency. C is assumed to be independent of y so that a 
is a constant that depends only on the physical properties of the medium. a must 
be less than unity since this is the condition that N be real. If the medium is an 
isothermal perfect gas 

Po 

where y is the ratio of specific heats, and this in conjunction with the hydrostatic 
condition gives OL = l/y. 

If the medium is water, with a variable concentration of salt to produce the 
stratification, the insertion of typical values into (2.15) shows that a will be small 
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unless 1/p, which is the scale height of the density variations, is greater than about 
10 miles. Thus for most laboratory experiments a will be small, but this need not 
be so for the ocean. 

FIGURE 1. Phase and group velocities of internal waves. 

The condition that 
p = exp (ik,x + ik, y - $6~)  

should be a solution of (2.10) is 

(2.16) 

(2.17) 

If p/kz is small, (2.16) is approximately a wave whose phase velocity C, is in 
the direction (kl, k,) and whose group velocity C, is in the direction of the normal 
to the hyperbola (2.17) in the sense shown in figure 1. (See, for example, Phillips 
1966, p. 175.) Also, if all the vectors C, are drawn from the origin 0 they occupy 
only the two sectors 

1 

3. Solutions for sources and vortices 
A particular solution of (2.10) will now be found and it will be shown that the 

velocity components given in terms of it by (2.11) and (2.12) are those due to a 
point source. 
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It may readily be shown that 

where 

and 

is a solution of (2.10) provided 
d2f ldf  -+--+f = 0, 
dC2 5d6 

which is Bessel’s equation of zero order. Hence a solution of (2.10) is 

where H s ) (  [) is the Hankel function of the first kind. Now 
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The branch of the two-valued function [that is defined by (3.1) will now be 
chosen so that the Sommerfeld radiation condition is satisfied. It suffices to 
consider the half-plane x > 0 since the pressure field due to a point source at  the 
origin must be an even function of x. It is clear from the discussion at  the end 
of fj 2 that at large distances from the origin there will be waves only in the region 
1y/x1 < 1/r, and that the horizontal component of the phase velocity of the 
waves in this region will be positive. Hence take 

For convenience let 
u+ = xsinp- ycosp, 
Q = xsinpuycosp, 

where 7 = cotp, 

so that (3.7) 

Both (rt and uk have branch points at  the origin and the values (3.5) for 5 will be 
obtained if ut (,a) is taken to have its principal value for u+(u-) real positive 
and if the indentation around the origin lies in the upper half plane. Now 

(3.8) 
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where E is Euler’s number, so that by (3.3) and (3 .7)  

where H is the Heaviside step function and r = ( x z  + y2)& is the distance from the 
origin. 

Now in the region where /j’r is small the set of equations (2.10) to (2.14) becomes 
approximately 

au av -+- = 0, ax ay 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

which are the familiar Boussinesq equations. According to them the velocity 
components corresponding to ps as given by (3.9) are 

cos p ix sin p cos jh 
us = --{S((T+)+S(cr_)}+------- 4 2nr+ (T- 

where 6 is the Dirac delta function. 
Equations (3.15) and (3.16) hold in x > 0. The values of us and ~ 1 , ~  in x < 0 may 

be obtained by noting that us is an odd function of x and vs an even function. 
The velocity given by (3.15) and (3.16) is always in the radial directioii so that 

its value a t  a point having polar co-ordinates ( r ,  q5)  can be expressed in the form 

us = (YlS + iq,) cos 9’ us = (YlS + iq2s) sin 9, 
where QlS = i{W+)+W-)} 
and 

The instantaneous radial velocity is qIs cos wt + qS sin wt and the main features 
of the flow are shown in figure 2. It consists of four jets directed outwards along 
the lines v+ = 0, (T- = 0, each having a flux i c o s w t .  The out-of-phase speed 
qzssin wt is singular along these lines and the total out-of-phase flux from the 
origin a t  any instant is zero. 

It follows from (3.14) that there is a stream function @s such that, 



The emission of internal waues 663 

and (3.15) and (3.16) give 

The constant of integration in (3.17) has been chosen to make $s zero on x = 0, 
y > 0. Since $s is an odd function of x this ensures that it is continuous on x = 0, 
y > 0. 

FIGURE 2. Motion due to a source of strength COB wt in a stratified fluid. The motion is in 
the radial direction and the in-phase component consists of four jets each having a flux 
off cos wt. These are denoted by heavy arrows in the figure. The figure also gives schematic 
values of qzs where qzs sin wt is the out-of-phase component. 

@s will be called the stream function for a source of unit strength at  the origin. 
If @s is differentiated with respect to y and then integrated with respect to x 

the result is the stream function 

$hv = --Iog(u.+u.-) irl 
4n 

$v is defined to be an even function of x and wiIl be called the stream function 
for SL vortex of unit strength at the origin. 
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4. Fluid velocities due to distributions of sources and vortices 
In this section the fluid velocities due to line distributions of sources and 

vortices will be determined and the results will be used in $5 to determine the 
motions produced by a vibrating slender cylinder. 

\ 

I 

FIGURE 3. Notation for motion duo to a distribution of sources or vortices on O A .  

A distribution of sources will be considered first. 
Let OA be a straight line of length L (see figure 3) that is inclined at an angle 8 

to Ox and on which there is a distribution of sources of strength f i t )  where t 
is the arc length from 0. Then it follows from (3.17) that at  distances smd1 com- 
pared to 1//? 

where K,(t) = t { l + H ( ( ~ + - ~ + ( t ) ) - H ( ( c r - - ~ - ( t ) }  (x > t cosB) ,  

and is an odd function of x - t cos 8, and 

@ = 1” {K,  ( t )  + iK, (t)lf(t) dt, 
0 
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Here cr+ and cr- are defined by (3.6) and 

7+(t )  = tsin(p-O), 7-(t) = tsin(p+B) (4.1) 

are the values of cr+ and u- respectively for x = t cos 8, y = t sin 8. 
An alternative, and very convenient, way of writing the above expression for 

f- (7-) log (a- - T-)  d7-, (4.2) s i 
477 sin ( p  + 8)  r- 

- 

where f ( t )  = f+(7+) = f-(7-). 

- 81) of the real 7+ axis 
with an indentation either above or below the point T+ = cr+, and I'- is the 
interval (0, L sin @ + 81) of the real 7- axis with an indentation at  7- = cr-. For 
points that lie above OA and its extensions the indentation is below cr+ and above 
cr- and for points below OA the indentation is above (r+ and below cr-. 

The path of integration I?+ is the interval (0, L sin 

Region 
I, IV, VI, IX 
I1 
I11 
V 
VII  
VII I  
X 

Second last term 
Zero 
Zero 
+ + 

Zero 

Last term 
Zero 
+ 
+ 

Zero - 
- 

Zero 

TABLE 1. Signs of last two terms in equations (4.3) and (5.4). 

It follows from (4.2) that the fluid velocity is 

V =  d7-, 

where 8+(G-) is a unit vector parallel to the lines on which u+(cr-) is constant 
in the sense shown in figure 3. 

Application of the residue theorem gives 
.A 
%(r- 

-- P 
L sin (a-0) 

4n sin ( p  + 8) V =  

A 

(4.3) 
x/oL *in (a+@) f- (7J a7- 5 -- f+@+P+ + f - ( s b -  

r- - (+- 4 sin (p - 8) - 4sin ( p  + 8) ' 

where P denotes the Cauchy principal value. To specify the signs of the last two 
terms it is convenient to consider separately the various regions, shown in 
figure 3, into which the Oxy plane is divided by the lines through 0 and A on 
which cr+ or u- is constant. Table 1 gives the signs of the terms and also shows in 
which regions each is zero. 

In  the applications the normal and tangential components of the velocity on 
either side of the line OA will be needed. Let P and B be unit vectors in the direc- 
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tion of the normal and tangent to OA in the senses shown in figure 3 and let vu 
and vL denote the velocities on the upper and lower sides of the line respectively. 
Then it follows from (4.3) that 

f (9) sin 20.i i sin 2p.i 

f(s) sin 28.i i sin 2p.i 

(4.5) 
where x = s cos 8, y = s sin 8. 

For a distribution of vortices of strength g ( t )  it follows from (3.18) that 

where r+ and I?- have the same meaning as in (4.2) and 

Hence 
s ( t )  = 9+(7+) = 9-(7-). 

and 
r sin 2pg (s) .i ir sin 28.i 

vu = - + 

q sin 2pg (s) .i 

4sin(p-0)sin(p+0) 4nsin(p-O)sin(p++) 
(4.8) 

(4.9) 

ir sin 28.i 
VL = + 4sin(p-@sin(p+O) 4;rrsin(,u-@)sin(,t~+@) 

5. Vibrating slender cylinders 
Consider an infinite body of stratified fluid whose equilibrium density is given 

by (2 .5 ) .  We consider the two-dimensional motion produced in the fluid by the 
vibration of a horizontal cylinder. Suppose that the generators of the cylinder 
are normal to  the Oxy plane and let osn be a second set of axes in this plane with 0s 
inclined at  an angle 0 to Ox. 

The cylinder and its motion are supposed to be such that at all times the various 
points of its cross-section are close to the segment o < s < L of the os axis. Thus 
the equations of its upper and lower surfaces can be written 

(0 < s < L ) ,  
n = e{Hu ( s )  +h, (s)  exp ( - iut)} 
n = e(H,(s)+h,(s)exp( - i w t ) )  

respectively. Here B is a small parameter and o is the angular frequency of the 
vibration. 

The boundary condition at the surface of the cylinder is approximately equiva- 
lent to the conditions 

( 0  < s < L),  I qn+ (8) = - iwshu (8) 
4,  (8) = -iweh,(s) 
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where qz (s) exp ( - iwt) (q; (s) exp ( - iwt ) )  is the limiting value of the velocity 
component qn as the segment o < s < L is approached from above (below). 

As in aerofoil theory, it is convenient to consider separately the symmetric 
and the anti-symmetric problems. Let 

b (4 = 9@ (4 - CIn (41 
c (8) = 9k6 (8) + G w1. and 

In  the symmetric problem the boundary condition is 

(0 < s < L )  q, = b(s ) ,  n = o + ,  
= - b ( s ) ,  n = 0 - ,  

and in the anti-symmetric problem it is 

q, =c(s), n =  O +  and 0-  (0 < s <  L).  (5.2) 

5.1 The symmetric problem 
Equations (4.4) and (4.5) show that the boundary condition (5.1) is satisfied by a 
distribution of sources on n = 0, o < s < L of strength 

f(s) = 2b(s). 

It follows from (4.3) and (5.3) that 
(5.3) 

where 

and table 1 refers to this equation as well as equation (4.3). Also from (3.1) and 
(3.3) 

b ( t )  = b + ( ~ + )  = b-(7-), 

(5 -5 )  
and if ,f3r is small (3.8) and (5.5) show that 

2, = -___ ?lpgwQ (log(/3L)+10g(------- 1 [--- 1 "(l-")]d)+E+l) 
2n 2cosp 4 1 + q  

Q = 2 b( t )d t  1: 
is the total source strength and may, without loss of generality, be taken to be 
real. 

Suppose that Q is not zero. Then to a first approximationp is constant through- 
out the region where /3r is small: 

p = -@Qlog(/3L). 27l (5.7) 
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Now the time average of the power radiated across a curve of length 1 is 

where s is arc length, q,, the normal velocity and an asterisk denotes the complex 
conjugate. Applying this result a t  the surface of the cylinder gives that the time 
average of the power radiated is approximately 

p =  - -___ w&JQ2 log (PL). 
4n (5.9) 

Equation (5.4) shows that there is an in-phase volume flow of Q/4 in each 
of the four directions that makes angles fp, f (n-p) with the horizontal and 
i t  follows that one quarter of the above power is radiated in each of these direc- 
tions. 

We now consider the case when Q is zero. (5.6) gives that to a first approxima- 

Let r ,  #J be the polar co-ordinates of a point. Then since Q vanishes 
L sin (p+  B )  

0 
b-(T- )dT-  = 0, J-oLeini’-B) b+(T+)dT+ = s 

and it follows from (5.4) and (5.10) that? 

except for those values of q5 for which the integrands in (5.4) and (5.10) are 
singular, i.e. = & p, f (n-p). Hence the cylinder radiates power only in these 
directions and it may also be shown that the power radiated in the direction p, 
for example, is confined to the region V of figure 3. For points in this region 

L sin (p-0)  
p = -  

2nsin(p-8) 

and 

t These estimates give the behaviour for r large of the solution that is valid for PT 
small. The true behaviours for T large, which we do not need, could be derived from (3.4). 
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For the periodic motion of a rigid cylinder the normal velocities a t  all points 
of the surface of the cylinder are in phase so that in this case b ( t )  can be taken to 
be real. Denote the time average of the power radiated in the direction p by &/4. 
Then (5.8), (5.11) and (5.12) give 

- 
5 4 = -'&/oL/:b(t)b(s)log 4n Is-tl dtds. 

The power radiated in each of the directions -p, k ( 7 ~  - p) is also found to be 
Fg/4. 

5.2 The anti-symmetric problem 
The boundary condition is (5.2) and it follows from (4.8) and (4.9) that it will be 
satisfied by a distribution of vortices of strength g (s) provided 

y;gdt 2n = c(s) (0 < s < L). (5.13) 

The general solution of this integral equation is (see, for example, Carrier, 
Krook & Pearson 1966, p. 424) 

where k is an arbitrary constant, which may be determined as follows: 
In the relation (Lamb 1932, p. 204) 

(5.14) 

(5.15) 

take %?to consist of the upper and lower sides of the line OA. Here p is the total 
and not the perturbation pressure so that, using the hydrostatic condition, the 
linear approximation to (5.15) is 

(5.16) 

where pv and pL denote the density perturbations on the upper and lower sides 
of the line OA. Also from (3.12) and (3.13) 

p - i ( l + ? p ) w v  
3 -  9 

9 

which in conjunction with (4.8), (4.9) and (5.16) gives 

(sin2,u-sin20) g( t )d t  = 0. SI 
Hence unless 8 = &,a, +_ (n-p) the constant k in (5.14) is determined by the 
condition 

l r g ( t )  dt = 0. (5.17) 

v is given in terms of g(s) by (4.7). 
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Now if (3.1 1) and (3.12) are expressed in terms of g+, U- and $it may be shown 
that 

and 

Hence from (4.6) 

For the anti-symmetric motion of a rigid body c ( s )  can be taken to be real and 
then, by (5.13),  g(s )  will be pure imaginary: 

say. 

average of the power radiated in each of the directions 

9 (4 = i92 (4, 

Then proceeding as in the symmetric problem it can be shown that the time 
,u, (77 -,u) is 

(5.18) 

6. Examples 

are given below for illustrative purposes. 
Details of the solution of a typical symmetric and anti-symmetric problem 

6.1. Bymmetric motion of inclined $at plate 
For this case qz = U ,  q; = - U ,  b ( s )  = U and Q = 2 L U .  Hence (5.9) gives 

Also from (5.4) 

UL?+ Ui3- + + 
- 2 sin (p- 8) - 2sin (p+ 0) ' 

where L+ = L sin (p - 8), L- = sin (p + 0 )  and G+ and U- are defined by (3.6). 
Table 1 gives the signs to be taken for the last two terms and also shows the 

regions in which each is zero. The main features of the flow are apparent from 
this expression. 

6.2. Anti-symmetric motion of inclined $at plate 
For this case q: = U ,  q; = U and c(s) = U .  Hence by (5.14) and (5.17) 
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Equation (5.18) now gives 
- n?po*wL2U2 PA = 8 

By (4.7) the velocities in the various regions of figure 3 are as follows: 

671 

I1 
VII  ' in region 

iU(L--2a_)6- I11 
VIII  ' in region + f 

4 sin (p + 8) aZ_(L- - a-) 
iU(L+-2a+)S+ 

V 
X '  

The main features of the flow, including the behaviour at  large distances from 

in region 

US- + - - 

where each square root denotes a positive quantity. 

the plate, are apparent from the above expressions. 

7. Discussion 
The results obtained when the cross-sectional area of the cylinder varies with 

time exhibit some surprising features. If ,8L is small, the pressure is approxi- 
mately uniform throughout the region where /3r is small. Also the time average - 
of the power output is 

p =  - -___ wo*wQ2 log (PL), 
47r 

and this becomes indefinitely large as ,8L + 0 with Q fixed. 
For a rigid cylinder Q is zero and the power output is 

for the symmetric case and 

for the anti-symmetric case. 
Expressions which are applicable in both cases can be found as follows. Let B 

and C be corresponding points on either side of the chord OA of the cylinder and 
let OM and OM' be the two lines that are inclined at  an angle p to the vertical, 
OM being in the first quadrant and OM' in the second. Also let lAvua(s)I 
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(IAvb(s)l) be the absolute value of the difference in the velocity components in 
the direction OM (OM') at B and C. Then using (4.4)) (4.5)) (4.8)) (4.9) and (5.3) 
to express b ( s )  and g 2 ( s )  in terms of IAv, ( s ) ]  or 1AvL(s)I it  is found that in both 
cases the mean power output is 

These expressions are very similar to von K&rmBn's expression (see, for 
example, Sears 1954, p. 224) 

2 L L  

= --"-"1l0 4n J0 S"(x)S"(y)log Iy-21 dzdy 

for the drag of a body of revolution in supersonic flow. Here S ( x )  is the cross- 
sectional area of the body, L its length, U the free stream speed, pm the free 
stream density and dashes denote differentiation. 
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